New Combinatorial Complete One-Way Functions
نویسندگان
چکیده
In 2003, Leonid A. Levin presented the idea of a combinatorial complete one-way function and a sketch of the proof that Tiling represents such a function. In this paper, we present two new one-way functions based on semi-Thue string rewriting systems and a version of the Post Correspondence Problem and prove their completeness. Besides, we present an alternative proof of Levin’s result. We also discuss the properties a combinatorial problem should have in order to hold a complete one-way function.
منابع مشابه
On complete one-way functions
Complete constructions play an important role in theoretical computer science. However, in cryptography complete constructions have so far been either absent or purely theoretical. In 2003, L.A. Levin presented the idea of a combinatorial complete one-way function. In this paper, we present two new one-way functions based on semi-Thue string rewriting systems and a version of the Post correspon...
متن کاملThe Tale of One-Way Functions
The existence of one-way functions (owf) is arguably the most important problem in computer theory. The article discusses and refines a number of concepts relevant to this problem. For instance, it gives the first combinatorial complete owf, i.e., a function which is one-way if any function is. There are surprisingly many subtleties in basic definitions. Some of these subtleties are discussed o...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملBipieri tableaux
We introduce a new class of combinatorial objects, which we call “bipieri tableaux,” which arise in a natural way from the evaluation of products consisting of commutative or noncommutative complete homogeneous symmetric functions and elementary symmetric functions through repeated applications of Pieri rules. We prove using sign-reversing involutions on bipieri tableaux an elegant coproduct fo...
متن کاملCombinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions
The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008